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Abstract: Moving particle semi-implicit (MPS) method is a Lagrangian particle method, first proposed by 

Koshizuka and Oka for incompressible flows. Due to its Lagrangian nature, MPS is capable of computing large 

deformed free surface flow, such as violent liquid sloshing, green water and dam breaking. However, MPS 

suffers from high computational cost. This significantly limits its applications in 3D flows which have to 

involve a large number of particles. In the present work, a parallel strategy for GPU (Graphics Processor Units) 

based acceleration is developed, aiming to extend MPS to compute practical 3D flows. Simulation of 3D 

violent sloshing and 3D dam breaking is performed. Speed-up obtained by using GPU is satisfied. The solution 

of PPE and search of neighboring particle are accelerated up to 10 times and 6 times faster respectively based 

on the present parallel strategy, than serial computation. However, performance on different GPU indicates that 

neighbour list is a memory bound problem, while PPE solving is a compute bound problem.  
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1 Introduction1 

In recent years, meshless methods have become a research 

focus as their Lagrangian nature allows them tracing flows 

with free surfaces largely deformed, which is a challenging 

task for grid based method. MPS (Moving Particle 

Semi-implicit) is one such method, which is first developed 

by S.Koshizuka, Y.Oka (1998). Similar to SPH (Smooth 

Particle Hydrodynamics), the computational domain is 

represented by particles, and there is no constant topology 

between these particles. Therefore, it is quite suitable to deal 

with largely deformed free surface flow, such as liquid 

sloshing (Zhang and Wan, 2012a; Zhang and Wan, 2012b), 

dam breaking (Khayyer and Gotoh, 2012, Shakibaeinia and 

Jin, 2011), wave breaking (Gotoh and Sakai, 2006, Khayyer 

and Gotoh, 2008, Tang et al, 2014, Zhang et al. 2014) , and 

ship-wave interaction (Shibata et al,2012a, Jen Shiang 

Kouh,2007, Zhang, 2013).  

 

Despite being an excellent method for violent free surface 

flow, the MPS method still suffer from high computational 

cost due to its semi-implicit algorithm. Especially when it is 

applied into 3D free surface flows, a large number of particles 

are necessary and this can lead to the computational time 

increasing sharply. During the past decades, parallel 

computation, on multi-processor workstations or HPC, has 

been developed. Among the public literatures, most are based 

on CPU which needs large investments in equipment 

purchase and installation and a designated space for installing 

the computers and the related capacity of the cooling system 

used in the space. However, recently GPU becomes a 

preferable alternative approach 

                                                        
Foundation item: Supported by National Natural Science Foundation of 

China (Grant Nos. 51379125, 51490675, 11432009, 51411130131) 

*Corresponding author Email: dcwan@sjtu.edu.cn 
 

 

 

The GPUs (Graphics Processing Units) are multi-processors, 

which designed to optimize for the execution of massive 

number of threads. Until now, many particle researchers 

attempt to accelerate the computation by GPU based on their 

meshfree solvers. Harada et al. (2007) applied the GPU on 

SPH, and this is maybe the first implementation on SPH with 

GPU. Domínguez et al. (2014) developed an open-source 

solver on SPH with GPU. However, the literatues on GPU 

based on MPS is few. Chiemi Hori et al. (2011) performed a 

2D calculations of elliptical drop evolution and dam break 

flow with GPUs. Unlike the SPH method, the semi-implicit 

algorithm is adopted to obtain the pressure field and its 

consuming time is much more than that in the SPH using the 

explicit algorithm.  

 

In this paper, Graphics Processor Units (GPUs) is developed 

in the frame of MPS (Moving Particle Semi-implicit) based 

on in-house particle solver MLParticle-SJTU. Firstly, MPS 

and GPU are introduced briefly. Then the process of 

searching for neighbor particles and the implementation of 

solving the PPE (Poisson Pressure Equation) are discussed. 

Finally, the performance between GPU and CPU are 

analysized. In addition, the numerical results will be validated 

with experimental data. 

 

2 Methods  

2.1 Governing equations  

The governing equations are the continuum equation and 

the Navier-Stokes equations. These equations for 

incompressible viscous fluid are represented as： 
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Where D/Dt denotes substantial derivative, t = time, V = 

velocity vector, density  , p = pressure,ν= kinematic 

viscosity, and g = gravity acceleration. Thanks to 

Lagrangian nature, convection terms do not turn up in the 

momentum equations, which can avoid numerical diffusion 

due to the discretization of convection terms. 

 

2.2 Particle Interaction Models 

2.2.1 Kernel Function 

In particle method, governing equations are transformed to 

the equations of particle interactions. The particle 

interactions are based on the kernel function. In traditional 

MPS method, the kernel function is as following 

(Koshizuka, 1996): 
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A drawback of the above kernel function is that it becomes 

singular at r=0. This may cause unreal pressure between two 

neighboring particles with a small distance, then affect the 

computational stability. To overcome this, an improved 

kernel function is employed in this paper (Zhang and Wan, 

2011b): 
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The above kernel function has a similar form with the 

original kernel function (Eq.3) except its nonsingularity at r 

=0. 

 

2.2.2 Gradient Model 

Gradient operator is modeled as a local weighted average of 

the gradient vectors between particle i and its neighboring 

particles j: 
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Where: φ is an arbitrary scalar function, D is the number of 

space dimensions, n0 is the initial particle number density 

for incompressible flow. The particle number density in 

MPS method is defined as: 
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2.2.3 Laplacian Model 

Laplacian operator is derived by Koshizuka et al.(1998) 

from the physical concept of diffusion as： 
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Where:   is a parameter, introduced to keep the variance 

increase equal to that of the analytical solution. 

 

2.2.4 Model of incompressibility 

The incompressible condition in traditional MPS method is 

represented by keeping the particle number density constant. 

In each time step, there are two stages: first, temporal 

velocity of particles is calculated based on viscous and 

gravitational forces, and particles are moved according to 

the temporal velocity; second, pressure is implicitly 

calculated by solving a Poisson equation, and the velocity 

and position of particles are updated according to the 

obtained pressure. 

 

The pressure Poisson equation in traditional MPS method is 

defined as (Koshizuka et al., 1998): 
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where：n* is the particle number density in temporal field. 

 

The source term of the Poisson equation in Eq. 9 is solely 

based on the deviation of the temporal particle number 

density from the initial value. As the particle number 

density field is not smooth, the pressure obtained from Eq. 9 

is prone to oscillate in spatial and temporal domain. To 

suppress such unphysical oscillation of pressure, Tanaka and 

Masunaga (2010) proposed a mixed source term for PPE, 

which combines the velocity divergence and the particle 

number density. This improved PPE is rewritten by Lee et 

al.(2011) as: 
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where：  is a blending parameter with a value between 0 

and 1. The range of 0.01 0.05  is better according to 

numerical experiments conducted by Lee et al.(2011).  

 

2.2.5 Free Surface boundary condition 

In the MPS method, the free surface dynamic condition is 

enforced by assigning zero pressure for surface particles. By 

now, some approaches have been developed to detect the 

free surface particles. Koshizuka and Oka (1996) recognizes 

the surface particles according to the particle number 

density. Tanaka & Masunaga (2010) and Lee et al. (2011) 

judge the surface particle using number of neighbor 

particles. Khayyer et al. (2011) proposed a new criteria 

based on asymmetry of neighboring particles in which 

particles are judged as surface particles according to the 

summation of x-coordinate or y-coordinate of particle 

distance. In the present study, we employ a detection 

method which is also based on the asymmetry arrangement 

of neighboring particles, but use different equations, aiming 
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at describing the asymmetry more accurate, as 

follows(Zhang and Wan, 2011c): 
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The particle satisfying: 

i   F                                     (12) 

is considered as surface particle, where 𝛼 is a parameter, 

and has a value of 0.9 | F |0 in this paper, | F |0 is the initial 

value of | F | for surface particle. 

 

3. Implementation 

3.1 MPS Algorithm 

MPS adopts semi-implicit scheme to achieve temporal 

integration. The viscous force and gravity are calculated 

explicitly, while pressure is implicitly obtained by solving 

so-called PPE (pressure Poisson equation). The algorithm in 

MPS is shown in Fig. 1.   

According to analysis of computational time cost by each 

procedure, it is found that the particle interaction and PPE 

solving are most time consuming, which are up to 80% or 

even more. Therefore, parallelization analysis focus on 

these two parts in this paper. 

Initializing 

system

Neighbour List

Viscous force
Calculate density

Judge surface 
Solve Poisson 

PPE

Move particlesUpdate system

 

 Fig.1 The flow chart of MPS Method 

 

3.2 program on GPU 

3.2.1 programming model  

Graphics Processing Units (GPUs) have become important 

in providing processing power for high performance 

computing applications. Computing on the GPU, or GPGPU, 

is a steadily maturing technology. The main programming 

models you can choose for your general computation on 

GPUs are CUDA or OpenCL. 

 

OpenCL (The Open Computing Language) is an open 

standard that can be used to program CPUs, GPUs, and 

other devices from different vendors. Its programming 

languages is like the C. Although OpenCL promises a 

portable language for GPU programming, its generality may 

entail a performance penalty. 

 

CUDA (Compute Unified Device Architecture) is a parallel 

computing platform and programming model created by 

NVIDIA and implemented by the graphics processing units 

(GPUs) that they produce. CUDA includes the 

programming languages (such as CUDA C/C++, CUDA 

FORTRAN, CUDA python and other common 

programming languages extend),the related compilers, and a 

set of debug and profile tools, and produce good 

performance. 

 

With a comprehensive consideration, a model of CUDA has 

been chosen in this paper. And the combination of CPU and 

GPU implementation is employed in the present work, In 

other words, the implementation is on partial GPU. Thus, 

the data exchange between GPU and CPU is required 

several times during each loop step. 

 

3.2.2 Neighbor List 

The calculation fluid domain in MPS method is discretized 

by a set of initial distribution of particles, which possess 

material properties. Then the evolution of fluid system is 

driven by the interaction between particles. During the 

process, only particles that within a given distance will be 

calculated in the interactions. Hence, an algorithm used for 

finding out all the neighbor of each particles should be 

employed. 

 

As a kind of the simplest method, the brute-force of 

neighbor search is to find neighbors from all the other 

particles. Suppose N is the number of particles, the time 

complexity of brute-force search method will be 

O(N2),which is too time consumes. To speed up the search 

procedure, a common method is to divide the domain into 

subdomains, which can greatly reduce the search range. The 

algorithm of neighbor list used in this paper is based on 

Dominguez et al. (2010) and Green (2008).The domain is 

divided into grid at space of 2h and 4h, where h is the is the 

distance between two adjacent particles in the initial 

configuration. 

 

3.2.3 Solving the PPE 

Describing pressure Poisson equation Eq.10 can generate a 

linear system AX = B. Furthermore, the matrix A is a sparse 

matrix, which most of the elements are zero. To minimize 

the storage of A matrix, the algorithm of CSR (Compressed 

row Storage) is applied. As the solver of this linear system, 

the BI-CGSATB (H.A 1922) method is employed in this 

paper. In addition, the GPU-accelerated linear algebra 

libraries of CULA-Sparse is utilized for accelerating on 

GPU. 

 

4. Verification 

In this section, simulations for the verification of GPU-CPU 

implementation has been discussed. Based on CPU particle 

solver, MLParticle-SJTU, the implementation optimized for 
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both neighbor list and Poisson PPE solving of using GPU 

has been carried out. Although the algorithms used in CPU 

and GPU-CPU are the same, the results maybe not exactly 

the same. According to Chiemi et al. (2011), this mainly due 

to: the error accumulated by no ECC supported, the 

multiply-add results might be different in GPU and x86 

CPU, the influence of the reliability of compiler and so on. 

 

4.1 Experiment parameters 

In this paper, the computational model is a 3-D sloshing 

case, which described in Chang et al.(2013).The 

experimental configuration is depicted in Fig 2. The length 

of the tank is L=0.79m, its height is H=0.48m, and its width 

is W=0.48m. The depth of water is d=0.144 m, 

corresponding filling level is 30%. The measured Point P is 

near the free surface, 0.12m from the bottom of the tank. 

The tank is subjected to a sinusoidal horizontal motion as 

below: 

x = cos( )A t                                 (13) 

Where A is the amplitude with the value of 0.0575 m,

4.49 /rad s   is the frequency, which is equal to the first 

order resonant frequency of fluid motion. 

 

 
 

Fig.2 Configuration of sloshing tank 

 

4.2 Simulation parameters 

The simulation configurations of MPS used on CPU and 

GPU-CPU are the same. The total particle number used in 

this case has reached 660k, which includes 410k fluid 

particles and 250k boundary particles. The initial particle 

space is 0.005m, and the time step is 0.00015s. The radius 

of influence is chosen to be 3.5d (d: diameter of particle) for 

the Laplacian model and 2.1d for the gradient model. The 

acceleration of gravity is g=9.81m/s. The density of water is
31000 /kg m   

 

4.3 Calculation results 

The time histories of impact pressure obtained by 

experiment and numerical simulations on both CPU and 

GPU-CPU are compared in Fig. 3. It is seen that the 

pressure pattern looks like a typical ‘‘church roof’’ profile. 

Numerical results by both CPU and GPU-CPU are in good 

agreement with the experimental data, except the pressure 

peaks which shows discrepency due to unphysical 

oscillation of pressure field duiring simulation. 

 
 

Fig.3 Impact pressure at point P 

 

 
 

Fig.4 Impact pressure at point P during a period 

 

Figure. 4 shows the details of impact pressure evolution at 

point P in one period. It can be clearly observed that the 

numerical results of CPU and GPU-CPU coincide very 

well.The numerical results are also smoother than 

experimental data. 

 

Fig.5 shows snapshots of flow fields obtained by 

experiment, GPU-CPU and CPU simulation. It is seen the 

flow is quite violent. Complicated flow phenomena, such as 

splashing liquid and breaking wave, are observed. However, 

the shape of free surface computed by GPU-CPU and CPU 

are in good agreement with experimental observation. 

 

   
(a) experimental results 
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(b) results on GPU+CPU 

 

 
(c) results on CPU 

 

Fig.5 Comparison of snapshots between experiment (upper), 

simulation on GPU-CPU (middle) and simulation on CPU 

(lower) 

 

4.4 Comparison of calculation time  

In this section, the efficiency of using GPU is analyzed. A 

CPU of Intel(R) Core(TM) i7-4970k at 4.00 GHz and a 

GPU of GeForce GTX970 are used in this sloshing case. 

The driver version of GPU is 347.88 from NVIDIA. More 

details can be found in table 1. 

Table 1 The hardware and software environment 

Hardware 
Num of 

cores 
Memory 

Programmin

g language 

Compiler 

CPU 4 16GB C++ VS2013 

GPU 1664 4096MB CUDA C NVCC-6.5 

 

It should be pointed out that, in this paper, the recorded time 

of Neighbor List is the kernel time. That is to say, only the 

solve time on GPU was recorded, although a data transfer 

between GPU and CPU will be executed later. The CPU 

version was running on a single core. To analysis the speed 

up, the executed time of single precision and double 

precision on CPU implementation and CPU-GPU 

implementation are estimated.  

 
 

Fig.6 The execute time of different parts 

 

The Fig.6 represents the time of main parts within a loop 

step. It can be observed that the PPE solving using GPU is 

more than 10 times faster than CPU, while the neighbor list 

is about 6 times faster than CPU. However, the total time 

using GPU+CPU is only 2~3 times faster than CPU, which 

mainly due to the big amount of data transfer between CPU 

and GPU when processing neighbor list on GPU. It can be 

known that an small extra time increase will also make a big 

influence on speed up, for the total time (except the transfer 

time) is small too. And the details of this influence and 

optimization strategy will be studied in somewhere else, but 

not in this paper. 

 

5. Performance 

In this section, the performance on old hardware and new 

hardware will be discussed. The simulation is on a case of 

dam breaking with 280k particles, which described in Fig. 7. 

Using a simpler case with less particles is to ensure that 

simulation can run properly in old machines. The initial 

particle space is 0.015m, and the time step is 0.0002s. The 

radius of influence is chosen to be 4.01d (d: diameter of 

particle) for the Laplacian model and 2.1d for the gradient 

model. The acceleration of gravity is g=9.81m/s. The 

density of water is
31000 /kg m  . 

 

The i3-2350m and GT555m come from a laptop, and the 

hardware maybe released about year 2012.The I7-4970k 

and GTX970 come from a desktop, with the hardware 

released in 2014. The compute capability of GTX970 is 5.2, 

while GT555m is 2.1.The compute capability of a device 

identifies the features supported by the GPU hardware and 

is used by applications at runtime to determine which 

hardware features and/or instructions are available on the 

present GPU. In addition, more details can be found in 

table 2. 

 

5.1 Dam break results 

Fig. 8 shows some snapshots on the moment of liquid 

impacting on right side wall. The free surfaces overturns 

and liquid splashes. The flow field computed by GPU are 
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similar with that by CPU in terms of both free surface and 

pressure. 

 

 
 

Fig.7 Calculated domain of dam break 

 

 

 

 

Only CPU 

 

 

 

 

 

 

 

 

 

 

 

 

GPU+CPU 

 

 

 

 

 

 

Fig.8 Snapshots of dam break simulations at t = 1.34s. 

Table 2 The hardware and software environment 

Hardware 
Num of 

cores 
Memory 

Programmin

g language 

Compiler 

I7-4970k 4 16GB C++ VS2013 

I3-2350m 2 8GB C++ VS2013 

GT555m 144 2048MB CUDA C NVCC-7.0 

GTX970 1664 4096MB CUDA C NVCC-7.0 

 

5.2 Performance Results 

 
 

Fig.9 Single precision VS Double precision  

 

In the previous studies of GPU, the performance is usually 

carried out on single precision. However, double precision 

might be required to obtain converged results. Thus, an 

analysis of discussing the double ability versus single 

precision has been carried out here. Fig.9 shows that the 

calculation speed of double precision is about the same as 

single precision in both new CPU and old CPU, which is 

slightly over 1.0. However, the single precision becomes 

more obvious faster than double precision on GPU, with a 

trend of increasing the ratio. The single precision 

computation ability turns more powerful might mainly due 

to GPUs are widely used in game industry, which usually 

employed single precision.  

 

 
 

Fig.10 New hardware VS old hardware 

 

The speedups obtain by new hardware and old hardware are 

discussed here. As depicted in Fig. 10, we can find that the 

speedup on GPU is faster than CPU, which can indicate that 

the compute ability of GPU has been grown faster than CPU. 

In addition, speedups obtained in PPE solving faster than in 

neighbour list on GPU-CPU. This might mainly due to the 

PPE solving is a computer-bound problem, while the 

neighbour list is a memory-bound problem (Herault et al., 

2010). Memory bound refers to a situation in which the time 

to complete a given computational problem is decided 
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primarily by the amount of memory required to hold data. In 

other words, the limiting factor of solving a given problem 

is the memory access speed. While limiting factor of 

compute bound is the number of computer cores and the 

speed of processor.   

 

6. Conclusion 

In this paper, GPU is applied to accelerate MPS 

computation. Parallel strategy is achieved by using CUDA, 

based on the frame of MPS. Two main time consuming 

parts, including searching the neighbour particles and 

solving the Poisson pressure equation, are discussed. To 

analyze the parallel efficiency, a violent sloshing flow and 

dam breaking are carried out. Satisfied speed-up is obtained 

by using GPU (I3-2350m, GT555m) compared with serial 

computation on a personal computer with I7-4970k, 

GTX970, and better speedup is achieved on GPU on new 

hardware. Moreover, the GPU simulation with single 

precision produces better acceleration than that with double 

precision. Detailed analysis shows that neighbour list is a 

memory bound problem, while Poisson PPE solving is a 

compute bound problem. Exchanging data between GPU 

and CPU cost much computation time and this can be 

optimize in our future works. 
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