
Proceedings of the 9th International Workshop on Ship and Marine Hydrodynamics, 26 – 28 August 2015, Glasgow, UK

GPU Based Acceleration of MPS for 3D Free Surface Flows

Haizhou Li1,2, Youlin Zhang1,2 and Decheng Wan1,2*

1. State Key Laboratory of Ocean Engineering, School of Naval Architecture, Ocean and Civil Engineering, Shanghai Jiao Tong University,

2. Collaborative Innovation Center for Advanced Ship and Deep-Sea Exploration, Shanghai 200240, China

Abstract: Moving particle semi-implicit (MPS) method is a Lagrangian particle method, first proposed by

Koshizuka and Oka for incompressible flows. Due to its Lagrangian nature, MPS is capable of computing large

deformed free surface flow, such as violent liquid sloshing, green water and dam breaking. However, MPS

suffers from high computational cost. This significantly limits its applications in 3D flows which have to

involve a large number of particles. In the present work, a parallel strategy for GPU (Graphics Processor Units)

based acceleration is developed, aiming to extend MPS to compute practical 3D flows. Simulation of 3D

violent sloshing and 3D dam breaking is performed. Speed-up obtained by using GPU is satisfied. The solution

of PPE and search of neighboring particle are accelerated up to 10 times and 6 times faster respectively based

on the present parallel strategy, than serial computation. However, performance on different GPU indicates that

neighbour list is a memory bound problem, while PPE solving is a compute bound problem.

Keywords: GPU; CUDA; MPS; sloshing; free surface flow

1 Introduction1

In recent years, meshless methods have become a research

focus as their Lagrangian nature allows them tracing flows

with free surfaces largely deformed, which is a challenging

task for grid based method. MPS (Moving Particle

Semi-implicit) is one such method, which is first developed

by S.Koshizuka, Y.Oka (1998). Similar to SPH (Smooth

Particle Hydrodynamics), the computational domain is

represented by particles, and there is no constant topology

between these particles. Therefore, it is quite suitable to deal

with largely deformed free surface flow, such as liquid

sloshing (Zhang and Wan, 2012a; Zhang and Wan, 2012b),

dam breaking (Khayyer and Gotoh, 2012, Shakibaeinia and

Jin, 2011), wave breaking (Gotoh and Sakai, 2006, Khayyer

and Gotoh, 2008, Tang et al, 2014, Zhang et al. 2014) , and

ship-wave interaction (Shibata et al,2012a, Jen Shiang

Kouh,2007, Zhang, 2013).

Despite being an excellent method for violent free surface

flow, the MPS method still suffer from high computational

cost due to its semi-implicit algorithm. Especially when it is

applied into 3D free surface flows, a large number of particles

are necessary and this can lead to the computational time

increasing sharply. During the past decades, parallel

computation, on multi-processor workstations or HPC, has

been developed. Among the public literatures, most are based

on CPU which needs large investments in equipment

purchase and installation and a designated space for installing

the computers and the related capacity of the cooling system

used in the space. However, recently GPU becomes a

preferable alternative approach

Foundation item: Supported by National Natural Science Foundation of

China (Grant Nos. 51379125, 51490675, 11432009, 51411130131)

*Corresponding author Email: dcwan@sjtu.edu.cn

The GPUs (Graphics Processing Units) are multi-processors,

which designed to optimize for the execution of massive

number of threads. Until now, many particle researchers

attempt to accelerate the computation by GPU based on their

meshfree solvers. Harada et al. (2007) applied the GPU on

SPH, and this is maybe the first implementation on SPH with

GPU. Domínguez et al. (2014) developed an open-source

solver on SPH with GPU. However, the literatues on GPU

based on MPS is few. Chiemi Hori et al. (2011) performed a

2D calculations of elliptical drop evolution and dam break

flow with GPUs. Unlike the SPH method, the semi-implicit

algorithm is adopted to obtain the pressure field and its

consuming time is much more than that in the SPH using the

explicit algorithm.

In this paper, Graphics Processor Units (GPUs) is developed

in the frame of MPS (Moving Particle Semi-implicit) based

on in-house particle solver MLParticle-SJTU. Firstly, MPS

and GPU are introduced briefly. Then the process of

searching for neighbor particles and the implementation of

solving the PPE (Poisson Pressure Equation) are discussed.

Finally, the performance between GPU and CPU are

analysized. In addition, the numerical results will be validated

with experimental data.

2 Methods

2.1 Governing equations

The governing equations are the continuum equation and

the Navier-Stokes equations. These equations for

incompressible viscous fluid are represented as：

1
0

D

Dt




 V = (1)

 2

21D
P

Dt



     

V
V g (2)

Where D/Dt denotes substantial derivative, t = time, V =

velocity vector, density  , p = pressure,ν= kinematic

viscosity, and g = gravity acceleration. Thanks to

Lagrangian nature, convection terms do not turn up in the

momentum equations, which can avoid numerical diffusion

due to the discretization of convection terms.

2.2 Particle Interaction Models

2.2.1 Kernel Function

In particle method, governing equations are transformed to

the equations of particle interactions. The particle

interactions are based on the kernel function. In traditional

MPS method, the kernel function is as following

(Koshizuka, 1996):

 1 0
()

 0

e
e

e

r
r r

W r r

r r


  

 
 

 (3)

A drawback of the above kernel function is that it becomes

singular at r=0. This may cause unreal pressure between two

neighboring particles with a small distance, then affect the

computational stability. To overcome this, an improved

kernel function is employed in this paper (Zhang and Wan,

2011b):

 1 0
0.85 0.15()

 0

e
e

e

e

r
r r

r rW r

r r


  

 
 

 (4)

The above kernel function has a similar form with the

original kernel function (Eq.3) except its nonsingularity at r

=0.

2.2.2 Gradient Model

Gradient operator is modeled as a local weighted average of

the gradient vectors between particle i and its neighboring

particles j:

0 2
() (| |)

| |

j i

i j i j i

j i j i

D
W

n 

 
     


 r r r r

r r
 (5)

Where: φ is an arbitrary scalar function, D is the number of

space dimensions, n0 is the initial particle number density

for incompressible flow. The particle number density in

MPS method is defined as:

(| |)i j i

j i

n W


    r r (6)

2.2.3 Laplacian Model

Laplacian operator is derived by Koshizuka et al.(1998)

from the physical concept of diffusion as：

2

0

2
() (| |)i j i j i

j i

D
W

n
  

 

      r r (7)

2(| |) | |

(| |)

j i j i

j i

j i

j i

W

W






  








r r r r

r r
 (8)

Where:  is a parameter, introduced to keep the variance

increase equal to that of the analytical solution.

2.2.4 Model of incompressibility

The incompressible condition in traditional MPS method is

represented by keeping the particle number density constant.

In each time step, there are two stages: first, temporal

velocity of particles is calculated based on viscous and

gravitational forces, and particles are moved according to

the temporal velocity; second, pressure is implicitly

calculated by solving a Poisson equation, and the velocity

and position of particles are updated according to the

obtained pressure.

The pressure Poisson equation in traditional MPS method is

defined as (Koshizuka et al., 1998):
* 0

i

0 2 0

2 n
() (| |)

n
j i j i

j i

D n
P P W

n t



 

  
    


 r r (9)

where：n* is the particle number density in temporal field.

The source term of the Poisson equation in Eq. 9 is solely

based on the deviation of the temporal particle number

density from the initial value. As the particle number

density field is not smooth, the pressure obtained from Eq. 9

is prone to oscillate in spatial and temporal domain. To

suppress such unphysical oscillation of pressure, Tanaka and

Masunaga (2010) proposed a mixed source term for PPE,

which combines the velocity divergence and the particle

number density. This improved PPE is rewritten by Lee et

al.(2011) as:
* 0

2 n+1 * i

2 0

n
(1)

n
i i

n
P V

t t

 
 

  
       

 
 (10)

where： is a blending parameter with a value between 0

and 1. The range of 0.01 0.05  is better according to

numerical experiments conducted by Lee et al.(2011).

2.2.5 Free Surface boundary condition

In the MPS method, the free surface dynamic condition is

enforced by assigning zero pressure for surface particles. By

now, some approaches have been developed to detect the

free surface particles. Koshizuka and Oka (1996) recognizes

the surface particles according to the particle number

density. Tanaka & Masunaga (2010) and Lee et al. (2011)

judge the surface particle using number of neighbor

particles. Khayyer et al. (2011) proposed a new criteria

based on asymmetry of neighboring particles in which

particles are judged as surface particles according to the

summation of x-coordinate or y-coordinate of particle

distance. In the present study, we employ a detection

method which is also based on the asymmetry arrangement

of neighboring particles, but use different equations, aiming

 3

at describing the asymmetry more accurate, as

follows(Zhang and Wan, 2011c):

0

1
() ()i i j ij

j i i j

D
r r W r

n r r

   


F (11)

The particle satisfying:

i   F (12)

is considered as surface particle, where 𝛼 is a parameter,

and has a value of 0.9 | F |0 in this paper, | F |0 is the initial

value of | F | for surface particle.

3. Implementation

3.1 MPS Algorithm

MPS adopts semi-implicit scheme to achieve temporal

integration. The viscous force and gravity are calculated

explicitly, while pressure is implicitly obtained by solving

so-called PPE (pressure Poisson equation). The algorithm in

MPS is shown in Fig. 1.

According to analysis of computational time cost by each

procedure, it is found that the particle interaction and PPE

solving are most time consuming, which are up to 80% or

even more. Therefore, parallelization analysis focus on

these two parts in this paper.

Initializing

system

Neighbour List

Viscous force
Calculate density

Judge surface
Solve Poisson

PPE

Move particlesUpdate system

 Fig.1 The flow chart of MPS Method

3.2 program on GPU

3.2.1 programming model

Graphics Processing Units (GPUs) have become important

in providing processing power for high performance

computing applications. Computing on the GPU, or GPGPU,

is a steadily maturing technology. The main programming

models you can choose for your general computation on

GPUs are CUDA or OpenCL.

OpenCL (The Open Computing Language) is an open

standard that can be used to program CPUs, GPUs, and

other devices from different vendors. Its programming

languages is like the C. Although OpenCL promises a

portable language for GPU programming, its generality may

entail a performance penalty.

CUDA (Compute Unified Device Architecture) is a parallel

computing platform and programming model created by

NVIDIA and implemented by the graphics processing units

(GPUs) that they produce. CUDA includes the

programming languages (such as CUDA C/C++, CUDA

FORTRAN, CUDA python and other common

programming languages extend),the related compilers, and a

set of debug and profile tools, and produce good

performance.

With a comprehensive consideration, a model of CUDA has

been chosen in this paper. And the combination of CPU and

GPU implementation is employed in the present work, In

other words, the implementation is on partial GPU. Thus,

the data exchange between GPU and CPU is required

several times during each loop step.

3.2.2 Neighbor List

The calculation fluid domain in MPS method is discretized

by a set of initial distribution of particles, which possess

material properties. Then the evolution of fluid system is

driven by the interaction between particles. During the

process, only particles that within a given distance will be

calculated in the interactions. Hence, an algorithm used for

finding out all the neighbor of each particles should be

employed.

As a kind of the simplest method, the brute-force of

neighbor search is to find neighbors from all the other

particles. Suppose N is the number of particles, the time

complexity of brute-force search method will be

O(N2),which is too time consumes. To speed up the search

procedure, a common method is to divide the domain into

subdomains, which can greatly reduce the search range. The

algorithm of neighbor list used in this paper is based on

Dominguez et al. (2010) and Green (2008).The domain is

divided into grid at space of 2h and 4h, where h is the is the

distance between two adjacent particles in the initial

configuration.

3.2.3 Solving the PPE

Describing pressure Poisson equation Eq.10 can generate a

linear system AX = B. Furthermore, the matrix A is a sparse

matrix, which most of the elements are zero. To minimize

the storage of A matrix, the algorithm of CSR (Compressed

row Storage) is applied. As the solver of this linear system,

the BI-CGSATB (H.A 1922) method is employed in this

paper. In addition, the GPU-accelerated linear algebra

libraries of CULA-Sparse is utilized for accelerating on

GPU.

4. Verification

In this section, simulations for the verification of GPU-CPU

implementation has been discussed. Based on CPU particle

solver, MLParticle-SJTU, the implementation optimized for

 4

both neighbor list and Poisson PPE solving of using GPU

has been carried out. Although the algorithms used in CPU

and GPU-CPU are the same, the results maybe not exactly

the same. According to Chiemi et al. (2011), this mainly due

to: the error accumulated by no ECC supported, the

multiply-add results might be different in GPU and x86

CPU, the influence of the reliability of compiler and so on.

4.1 Experiment parameters

In this paper, the computational model is a 3-D sloshing

case, which described in Chang et al.(2013).The

experimental configuration is depicted in Fig 2. The length

of the tank is L=0.79m, its height is H=0.48m, and its width

is W=0.48m. The depth of water is d=0.144 m,

corresponding filling level is 30%. The measured Point P is

near the free surface, 0.12m from the bottom of the tank.

The tank is subjected to a sinusoidal horizontal motion as

below:

x = cos()A t (13)

Where A is the amplitude with the value of 0.0575 m,

4.49 /rad s  is the frequency, which is equal to the first

order resonant frequency of fluid motion.

Fig.2 Configuration of sloshing tank

4.2 Simulation parameters

The simulation configurations of MPS used on CPU and

GPU-CPU are the same. The total particle number used in

this case has reached 660k, which includes 410k fluid

particles and 250k boundary particles. The initial particle

space is 0.005m, and the time step is 0.00015s. The radius

of influence is chosen to be 3.5d (d: diameter of particle) for

the Laplacian model and 2.1d for the gradient model. The

acceleration of gravity is g=9.81m/s. The density of water is
31000 /kg m 

4.3 Calculation results

The time histories of impact pressure obtained by

experiment and numerical simulations on both CPU and

GPU-CPU are compared in Fig. 3. It is seen that the

pressure pattern looks like a typical ‘‘church roof’’ profile.

Numerical results by both CPU and GPU-CPU are in good

agreement with the experimental data, except the pressure

peaks which shows discrepency due to unphysical

oscillation of pressure field duiring simulation.

Fig.3 Impact pressure at point P

Fig.4 Impact pressure at point P during a period

Figure. 4 shows the details of impact pressure evolution at

point P in one period. It can be clearly observed that the

numerical results of CPU and GPU-CPU coincide very

well.The numerical results are also smoother than

experimental data.

Fig.5 shows snapshots of flow fields obtained by

experiment, GPU-CPU and CPU simulation. It is seen the

flow is quite violent. Complicated flow phenomena, such as

splashing liquid and breaking wave, are observed. However,

the shape of free surface computed by GPU-CPU and CPU

are in good agreement with experimental observation.

(a) experimental results

 5

(b) results on GPU+CPU

(c) results on CPU

Fig.5 Comparison of snapshots between experiment (upper),

simulation on GPU-CPU (middle) and simulation on CPU

(lower)

4.4 Comparison of calculation time

In this section, the efficiency of using GPU is analyzed. A

CPU of Intel(R) Core(TM) i7-4970k at 4.00 GHz and a

GPU of GeForce GTX970 are used in this sloshing case.

The driver version of GPU is 347.88 from NVIDIA. More

details can be found in table 1.

Table 1 The hardware and software environment

Hardware
Num of

cores
Memory

Programmin

g language

Compiler

CPU 4 16GB C++ VS2013

GPU 1664 4096MB CUDA C NVCC-6.5

It should be pointed out that, in this paper, the recorded time

of Neighbor List is the kernel time. That is to say, only the

solve time on GPU was recorded, although a data transfer

between GPU and CPU will be executed later. The CPU

version was running on a single core. To analysis the speed

up, the executed time of single precision and double

precision on CPU implementation and CPU-GPU

implementation are estimated.

Fig.6 The execute time of different parts

The Fig.6 represents the time of main parts within a loop

step. It can be observed that the PPE solving using GPU is

more than 10 times faster than CPU, while the neighbor list

is about 6 times faster than CPU. However, the total time

using GPU+CPU is only 2~3 times faster than CPU, which

mainly due to the big amount of data transfer between CPU

and GPU when processing neighbor list on GPU. It can be

known that an small extra time increase will also make a big

influence on speed up, for the total time (except the transfer

time) is small too. And the details of this influence and

optimization strategy will be studied in somewhere else, but

not in this paper.

5. Performance

In this section, the performance on old hardware and new

hardware will be discussed. The simulation is on a case of

dam breaking with 280k particles, which described in Fig. 7.

Using a simpler case with less particles is to ensure that

simulation can run properly in old machines. The initial

particle space is 0.015m, and the time step is 0.0002s. The

radius of influence is chosen to be 4.01d (d: diameter of

particle) for the Laplacian model and 2.1d for the gradient

model. The acceleration of gravity is g=9.81m/s. The

density of water is
31000 /kg m  .

The i3-2350m and GT555m come from a laptop, and the

hardware maybe released about year 2012.The I7-4970k

and GTX970 come from a desktop, with the hardware

released in 2014. The compute capability of GTX970 is 5.2,

while GT555m is 2.1.The compute capability of a device

identifies the features supported by the GPU hardware and

is used by applications at runtime to determine which

hardware features and/or instructions are available on the

present GPU. In addition, more details can be found in

table 2.

5.1 Dam break results

Fig. 8 shows some snapshots on the moment of liquid

impacting on right side wall. The free surfaces overturns

and liquid splashes. The flow field computed by GPU are

 6

similar with that by CPU in terms of both free surface and

pressure.

Fig.7 Calculated domain of dam break

Only CPU

GPU+CPU

Fig.8 Snapshots of dam break simulations at t = 1.34s.

Table 2 The hardware and software environment

Hardware
Num of

cores
Memory

Programmin

g language

Compiler

I7-4970k 4 16GB C++ VS2013

I3-2350m 2 8GB C++ VS2013

GT555m 144 2048MB CUDA C NVCC-7.0

GTX970 1664 4096MB CUDA C NVCC-7.0

5.2 Performance Results

Fig.9 Single precision VS Double precision

In the previous studies of GPU, the performance is usually

carried out on single precision. However, double precision

might be required to obtain converged results. Thus, an

analysis of discussing the double ability versus single

precision has been carried out here. Fig.9 shows that the

calculation speed of double precision is about the same as

single precision in both new CPU and old CPU, which is

slightly over 1.0. However, the single precision becomes

more obvious faster than double precision on GPU, with a

trend of increasing the ratio. The single precision

computation ability turns more powerful might mainly due

to GPUs are widely used in game industry, which usually

employed single precision.

Fig.10 New hardware VS old hardware

The speedups obtain by new hardware and old hardware are

discussed here. As depicted in Fig. 10, we can find that the

speedup on GPU is faster than CPU, which can indicate that

the compute ability of GPU has been grown faster than CPU.

In addition, speedups obtained in PPE solving faster than in

neighbour list on GPU-CPU. This might mainly due to the

PPE solving is a computer-bound problem, while the

neighbour list is a memory-bound problem (Herault et al.,

2010). Memory bound refers to a situation in which the time

to complete a given computational problem is decided

 7

primarily by the amount of memory required to hold data. In

other words, the limiting factor of solving a given problem

is the memory access speed. While limiting factor of

compute bound is the number of computer cores and the

speed of processor.

6. Conclusion

In this paper, GPU is applied to accelerate MPS

computation. Parallel strategy is achieved by using CUDA,

based on the frame of MPS. Two main time consuming

parts, including searching the neighbour particles and

solving the Poisson pressure equation, are discussed. To

analyze the parallel efficiency, a violent sloshing flow and

dam breaking are carried out. Satisfied speed-up is obtained

by using GPU (I3-2350m, GT555m) compared with serial

computation on a personal computer with I7-4970k,

GTX970, and better speedup is achieved on GPU on new

hardware. Moreover, the GPU simulation with single

precision produces better acceleration than that with double

precision. Detailed analysis shows that neighbour list is a

memory bound problem, while Poisson PPE solving is a

compute bound problem. Exchanging data between GPU

and CPU cost much computation time and this can be

optimize in our future works.

Acknowledgement

This work is supported by National Natural Science

Foundation of China (Grant Nos. 51379125, 51490675,

11432009, 51411130131), The National Key Basic

Research Development Plan (973 Plan) Project of China

(Grant No. 2013CB036103), High Technology of Marine

Research Project of The Ministry of Industry and

Information Technology of China, Chang Jiang Scholars

Program (Grant No. T2014099) and the Program for

Professor of Special Appointment (Eastern Scholar) at

Shanghai Institutions of Higher Learning (Grant No.

2013022), to which the authors are most grateful.

References

A.J.C. Crespo, J.M. Domínguez, B.D. Rogers, M. Gómez-Gesteira,

S. Longshaw, R. Canelas, R. Vacondio, A. Barreiro, O.

García-Feal (2015), DualSPHysics: Open-source parallel CFD

solver based on Smoothed Particle Hydrodynamics (SPH),

Computer Physics Communications, 187 , 204-216

Chiemi Hori, Hitoshi Gotoh, Hiroyuki Ikari, Abbas Khayyer

(2011), GPU-acceleration for Moving Particle Semi-Implicit

method, Computers & Fluids, 51(1), 174-183

Monaghan JJ, Lattanzio JC (1985). A refined particle method for

astrophysical problems. Astron Astrophys 149, 135–43.

Green, S. (2008). CUDA Particles. Technical Report contained in

the CUDA SDK, www.nvidia.com.

Harada T, Koshizuka S, Kawaguchi Y (2007) Smoothed Particle

Hydrodynamics on GPUs. In Computer Graphics International.

63–70.

H.A. Van Der Vorst. Bi-CGSTAB (1992): A fast and smoothly

converging variant of Bi-CG for the solution of non-symmetric

linear systems. SIAM Journal on scientific and Statistical

Computing, 13(2), 631-644.

Hérault, A., Bilotta, G., & Dalrymple, R. A. (2010). SPH on GPU

with CUDA. Journal of Hydraulic Research, 48(S1), 74-79.

Hitoshi Gotoh, Abbas Khayyer, Hiroyuki Ikari, Chiemi Hori

(2009). Refined reproduction of a plunging breaking wave and

resultant splash-up by 3D-CMPS method. Proceeding of the

Nineteenth International Offshore and Polar Engineering

Conference. Osaka, Japan, June 21-26

Jen Shiang Kouh (2007). Simulation of a ship with partically filled

tanks rolling in waves by applying moving particle

semi-implicit method. International Conference on Engineering

Education. Coimbra, Portugal

Koshizuka S, Nobe A, Oka Y (1998). Numerical analysis of

breaking waves using the moving particle semi-implicit method.

International journal for numerical methods in Fluids 26(7),

751-769

Koshizuka, S, and Oka, Y (1996). Moving-particle semi-implicit

method for fragmentation of incompressible fluid, Nuclear

Science and Engineering, 123(3), 421-434

Lee, BH, Park, JC, Kim, MH, Hwang, SC (2011).Step-by-step

improvement of MPS method in simulating violent free-surface

motions and impact-loads, Computer methods in applied

mechanics and engineering, 200(9), 1113-1125.

Tanaka, M, and Masunaga, T (2010). Stabilization and smoothing

of pressure in MPS method by Quasi-Compressibility, Journal

of Computational Physics, 229(11), 4279-4290.

Zhenyuan Tang, Yuxing Zhang, Haizhou Li, Decheng Wan

(2014),Overlapping MPS Method for 2D Free Surface Flows,

The Twenty-fourth International Ocean and Polar Engineering

Conference, Busan, Korea, 411-420

Yuxing Zhang, Zhenyuan Tang, Yaqiang Yang, Decheng Wan

(2014),Parallel MPS Method for Three-Dimensional Liquid

Sloshing, The Twenty-fourth International Ocean and Polar

Engineering Conference, Busan, Korea, 257-265

Zhang, YX, and Wan, DC (2011b). Apply MPS Method to Simulate

Motion of Floating Body Interacting with Solitary Wave, In

Proceedings of the 7th International Workshop on

Hydrodynamics, Shanghai, China, 275-279

Zhang, YX, Wan, DC (2011c). Application of improved MPS

method in sloshing problem, In Proceedings of the 23rd

Chinese Symposium on Hydrodynamics, Xi’an, China

